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Introduction

• Profiling is an approach to measure application performance

• Simple Profiling:
- How long does an application take

• Advanced Profiling:
- Why does an operation take long time

• Goal: Find performance bottlenecks
- inefficient programming
- memory I/O bottlenecks
- parallel scaling
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Typical Optimization Workflow 

Profile 
application

Inspect and 
analyze

Optimize

Iterative workflow till desired performance is reached 
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Broad classification

• Hardware counters 
count events from CPU perspective (# of flops, memory loads, etc.)  
usually needs Linux kernel module installed or root permission

• Statistical profilers (sampling) 
interrupt program at given intervals to find the state of a program 

• Event based profilers (tracing)
collect information on each function call
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Plethora of Tools
• Cprofile
• Gprof
• Perf tool
• Intel Vtune
• HPCToolKit
• OpenSpeedShop
• TAU
• Nvidia Nvprof, Nsight
….
…
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Profiling DNN workloads
• Critical to understand workload performance

• Machine learning and deep learning models are implemented on a variety 
of hardware

• Most applications are written in Python using standard ML frameworks

• The frameworks generate kernels based on hardware and customized 
installation and libraries (MKL-DNN, CuDNN etc.)
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Challenges

• Profiling is hard, cumbersome and time-consuming

• Profiling tools generate lot of data and hard to understand

• The problem is further compounded with large, complex models with large 
volumes of data

• Need strategies to use right tools and detailed insights to how to analyze the 
profile data
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Profiling on Nvidia GPUs
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Profiling on Nvidia GPUs
Use Nvidia profiler ‘Nvprof’

• capture metrics from hardware counters
• invoked via command line or UI (Nvidia Visual Profiler NVVP)

See list  of options using
nvprof –h

Some useful options:
-o: create output file to import into nvvp
--metrics / -m : collect metrics
--events / -e   : collect events
--log-file : create human readable output file
--analysis-metrics :  collect all metrics to import into nvvp
--query-metrics/--query-events: list of available metrics/events
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Events and Metrics
• An event is a countable activity, action, or occurrence on a device. It corresponds to 

a single hardware counter value which is collected during kernel execution
• A metric is a characteristic of an application that is calculated from one or more 

event values
In general, events are only for experts, rarely used.

• Vary in number based on hardware family  (P100, K80, V100 etc)
• For example, on V100, nvprof gives 175 metrics
• Event and metric values are aggregated across all units in the GPU.
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Workflow – on Cooley

Option 1)
• Use ‘nvprof’ to collect metrics in an output file (compute node)
• Use ‘nvvp’ to visualize the profile (login node)

Option 2)
• Directly launch nvvp on compute node and profile the code interactively
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Profile Commands

– Kernel timing analysis: 
nvprof –-log-file timing.log <myapp>
nvprof -–log-file timing.log python myapp.py args

– Traces (#threads, #warps, #registers)
nvprof –-print-gpu-traces -–log-file traces.log <myapp>

– Get all metrics for all kernels
nvprof --metrics all --log-file all-metrics.log <myapp>

– Get metrics for guided analysis
nvprof --analysis-metrics –o analysis.nvvp <myapp>

– Visual profile to use Nvidia Visual Profiler (nvvp)
nvprof –o analysis.nvvp <myapp>
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Selective Profiling
• As profiling adds significant overhead, a better strategy is to profile only regions of 

interest (kernels and metrics)

• All metrics for kernels of interest: 
nvprof --profile-from-start off –-kernels <kernel-name> –-metrics all      
--log-file selective-profile.log <myapp>

• few metrics for kernels of interest
nvprof --profile-from-start off-–kernels <kernel-name> –-metrics ipc
--log-file selective-profile.log <myapp>

For example, if we want to profile heavy kernels only
Step 1) use nvprof to list all kernels sorted by the time
Step 2) re-run nvprof in selective profiling mode

• Profile GEMM kernels
nvprof --profile-from-start off –-kernels “::gemm:1” –-metrics all                                                    
--log-file selective-profile.log <myapp>
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Metrics and Events
Metrics relevant to identify compute, memory, IO characteristics

achieved_occupancy
ratio of the average active warps per active cycle to the 
maximum number of warps supported on a multiprocessor

ipc Instructions executed per cycle

gld_efficiency
Ratio of requested global memory load throughput to required 
global memory load throughput expressed as percentage.

gst_efficiency
Ratio of requested global memory store throughput to required 
global memory store throughput expressed as percentage.

dram_utilization
The utilization level of the device memory relative to the peak 
utilization on a scale of 0 to 10
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Detailed Analysis
Use visual profiler nvvp

40  

More details 
Deep dive into a kernel 

• The profilers let us dig much deeper into 
individual kernels 

• Moving from “it is going slow?” to “why is 
it going slow?” 

• Let’s dive into the elementwise 
operation 

• Requires interactive nvvp session, or 
output from --analysis-metrics 
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Example

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', 
input_shape=input_shape)) 
model.add(Conv2D(64, (3, 3), activation='relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
model.add(Dropout(0.25)) 
model.add(Flatten()) 
model.add(Dense(128, activation='relu’)) 
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax’)) 

model.compile(…....)

model.fit(.....)

Simple CNN in  Keras

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
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Nvidia Nsight Tools
• Nsight Systems - System-wide application algorithm tuning 
• Nsight Compute – Debug CUDA API and optimize CUDA kernels 

• To profile
$ nsys profile python train.py

• This generates profile file in ‘report.qdrep’ which can be imported to view with 
Nsight Systems UI

• To identify which kernels are run on Tensorcores (dedicated HW units for half/mixed 
precision matrix multiply-accumulate ops)

$ nv-nsight-cu-cli --kernel-id ::s884:1 python train.py
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https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/content/NVIDIA%20Nsight%20Systems%20Overview%20by%20Sneha%20Kottapalli.pdf

https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/content/NVIDIA%20Nsight%20Systems%20Overview%20by%20Sneha%20Kottapalli.pdf
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https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/content/NVIDIA%20Nsight%20Systems%20Overview%20by%20Sneha%20Kottapalli.pdf

https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/content/NVIDIA%20Nsight%20Systems%20Overview%20by%20Sneha%20Kottapalli.pdf
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Profiling on CPUs using Intel Vtune
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Application Performance Snapshot (APS)
APS generates a highlevel performance snapshot of your application.  Easy to run:

Results can be viewed in a single html file, or via command line:
| Summary information
|--------------------------------------------------------------------
HW Platform                : Intel(R) Processor code named Knights Landing
Logical core count per node: 256
Collector type             : Driverless Perf system-wide counting
Used statistics            : aps_results

|
| Your application might underutilize the available logical CPU cores
| because of insufficient parallel work, blocking on synchronization, or too much I/O. 
Perform function or source line-level profiling with tools like Intel(R) VTune(TM) 
Amplifier to discover why the CPU is underutilized.
CPU Utilization:                                6.50%

| Your application might underutilize the available logical CPU cores because of
| insufficient parallel work, blocking on synchronization, or too much I/O.
| Perform function or source line-level profiling with tools like Intel(R)

source /soft/compilers/intel/19.0.3.199/vtune_amplifier/apsvars.sh
export 
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/soft/compilers/intel/19.0.3.199/vtune_amplifier
/lib64
aps --result-dir=aps_results/ -- python /full/path/to/script.py
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Application Performance Snapshot (APS)

• Very easy to use
• Tracks important hardware metrics:

• Thread Load Balancing
• Vectorization
• CPU Usage

Pros Cons
• Only high level information – but then 

again, that is the design of this tool.
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Intel Vtune – Hotspots

sampling-mode=sw - User-Mode Sampling (default) used for profiling:
• Targets running longer than a few seconds
• A single process or a process-tree
• Python and Intel runtimes

sampling-mode=hw - (Advanced hotspots) Hardware Event-Based Sampling 
used for profiling:

• Targets running less than a few seconds
• All processes on a system, including the kernel



Argonne Leadership Computing Facility26

Intel Vtune – Advanced Hotspots

amplxe-cl -collect hotspots -knob sampling-mode=hw -finalization-mode=none -r vtune-
result-dir_advancedhotspots/ -- python /full/path/to/script.py

Advanced Hotspots analysis

• Detailed report of how effective the computation is on CPUs
• extends the hotspots analysis by collecting call stacks, context switch and 

statistical call count data and analyzing the CPI (Cycles Per Instruction) metric. 

Run the finalization step after the run completes from the login nodes

amplxe-cl -finalize -search-dir / -r vtune-result-dir_advancedhotspots
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Intel Vtune – Advanced Hotspots

• Visualize each thread activity and the functions that cause it.
• Give a bottom up and top down view, very useful for seeing which functions are 

hotspots 

amplxe-gui vtune-result-dir_advancedhotspots

Run the GUI to view your 
results:
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Useful Commands
amplxe-cl -c hotspots -- python3 myapp.py
amplxe-cl -R hotspots -report-output report-hotspots.csv -format csv

amplxe-cl -c uarch-exploration -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R uarch-exploration -report-output report-uarch-exploration.csv -format csv

amplxe-cl -c memory-access -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R memory-access -report-output report-memory-access.csv -format csv

amplxe-cl -c memory-consumption -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R memory-consumption -report-output report-memory-consumption.csv -format csv

change sampling interval
-k sampling-interval=<number>
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Useful Commands
amplxe-cl -report hw-events/summary -r r000ue/ -report-output ./report-uarch.csv -format 
csv

amplxe-cl -collect hotspots -strategy ldconfig:notrace:notrace -- python myapp.py

## get MKL-DNN verbose
export MKLDNN_VERBOSE=2
amplxe-cl -collect hotspots -strategy ldconfig:notrace:notrace -- python myapp.py
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Hands-on Exercise
Example scripts to profile an image classification CNN model with TF/Keras

https://github.com/argonne-lcf/ATPESC_MachineLearning
cd Profiling

Cooley
qsub -A training -q training -t 1:00:00 -n 1 qsub_mnist_profile_gpu.sh

Theta
qsub -A ATPSEC2020 -q ATPSEC2020 -t 1:00:00 -n 1 qsub_mnist_profile_cpu.sh
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Thank you!
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backup
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Operations on backward weights, data have stalls à high memory requirements
– Convolution layer is sensitive to compute units, memory and cachelines
– Dense layer is sensitive to communication -> bandwidth
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VTune profiling 
source /opt/intel/vtune_amplifier/amplxe-vars.sh
aprun -n … -e OMP_NUM_THREADS=128 \

-e LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64 \
ampxle-cl -collect advance-hotspots -r output_dir python script.py

The python modules are compiled using -g flag. Therefore, the user could trace the source file in Vtune. 

Remember to set LD_LIBRARY_PATH, 
Put vtune library at the end!! Otherwise, it 
might complaint about the GLIBCXX version.

More details: Profiling Your Application with Intel VTune and 
Advisor - Carlos Rosales-Fernandez and Paulius Velesko, Intel
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GPU Memory - metrics

1.dram_read_throughput, dram_read_transactions
2.dram_write_throughput, dram_write_transactions
3.sysmem_read_throughput, sysmem_read_transactions
4.sysmem_write_throughput, sysmem_write_transactions
5.l2_l1_read_transactions, l2_l1_read_throughput
6.l2_l1_write_transactions, l2_l1_write_throughput
7.l2_tex_read_transactions, l2_texture_read_throughput
8.texture is read-only, there are no transactions possible on 
this path
9.shared_load_throughput, shared_load_transactions
10.shared_store_throughput, shared_store_transactions
11.l1_cache_local_hit_rate
12.l1 is write-through cache, so there are no (independent) 
metrics for this path - refer to other local metrics
13.l1_cache_global_hit_rate
14.see note on 12
15.gld_efficiency, gld_throughput, gld_transactions
16.gst_efficiency, gst_throughput, gst_transactions

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

GPU Memory 

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth
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GEMM – 2*m*n*k operations
m, k – hidden layer size 
n = minibatch size

2 * 512 * 512 * 64   = 0.03 GFLOP

Peak upper limit = 6000 GFLOP/s

Runtime ~ 5.6 usec

18  

SGEMM Performance 

• GEMM performs ~2mnk floating point operations 

• In this case, m and k are the hidden layer size, n is the minibatch size 

• 512 * 512 * 64 * 2 = 0.034 GFLOP 

• The GPU I’m using can perform ~6,000 GFLOP per second 

• Best GEMM runtime is therefore: 5.7us 

 

 

• 72us => ~500 GFLOP/s 

Back of the envelope 

Time(%)      Time     Calls       Avg       Min       Max  Name  
 93.93%  575.72us         8  71.964us  70.241us  78.945us  maxwell_sgemm_128x64_tn 
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Optimization

22  

[A1][h] = [x1] 

[A2][h] = [x2] 

[A3][h] = [x3] 

[A4][h] = [x4] 

SGEMM Performance 
Improvement #1 

•  As our matrix operations share inputs we can combine them 

A    [h] =   x  

23  

Combined Matrices 
Improvement #1 

Time(%)      Time     Calls       Avg       Min       Max  Name  
 93.93%  575.72us         8  71.964us  70.241us  78.945us  maxwell_sgemm_128x64_tn 

Time(%)      Time     Calls       Avg       Min       Max  Name  
 84.40%  198.11us         2  99.057us  98.177us  99.937us  maxwell_sgemm_128x64_tn 

• From ~500 GFLOP/s to ~1350 GFLOP/s 

 

2.5x performance gain


